Bayesian adaptive sequence alignment algorithms
نویسندگان
چکیده
The selection of a scoring matrix and gap penalty parameters continues to be an important problem in sequence alignment. We describe here an algorithm, the 'Bayes block aligner, which bypasses this requirement. Instead of requiring a fixed set of parameter settings, this algorithm returns the Bayesian posterior probability for the number of gaps and for the scoring matrices in any series of interest. Furthermore, instead of returning the single best alignment for the chosen parameter settings, this algorithm returns the posterior distribution of all alignments considering the full range of gapping and scoring matrices selected, weighing each in proportion to its probability based on the data. We compared the Bayes aligner with the popular Smith-Waterman algorithm with parameter settings from the literature which had been optimized for the identification of structural neighbors, and found that the Bayes aligner correctly identified more structural neighbors. In a detailed examination of the alignment of a pair of kinase and a pair of GTPase sequences, we illustrate the algorithm's potential to identify subsequences that are conserved to different degrees. In addition, this example shows that the Bayes aligner returns an alignment-free assessment of the distance between a pair of sequences.
منابع مشابه
An Application of the ABS LX Algorithm to Multiple Sequence Alignment
We present an application of ABS algorithms for multiple sequence alignment (MSA). The Markov decision process (MDP) based model leads to a linear programming problem (LPP), whose solution is linked to a suggested alignment. The important features of our work include the facility of alignment of multiple sequences simultaneously and no limit for the length of the sequences. Our goal here is to ...
متن کاملgpALIGNER: A Fast Algorithm for Global Pairwise Alignment of DNA Sequences
Bioinformatics, through the sequencing of the full genomes for many species, is increasingly relying on efficient global alignment tools exhibiting both high sensitivity and specificity. Many computational algorithms have been applied for solving the sequence alignment problem. Dynamic programming, statistical methods, approximation and heuristic algorithms are the most common methods appli...
متن کاملFBB: a fast Bayesian-bound tool to calibrate RNA-seq aligners
MOTIVATION Despite RNA-seq reads provide quality scores that represent the probability of calling a correct base, these values are not probabilistically integrated in most alignment algorithms. Based on the quality scores of the reads, we propose to calculate a lower bound of the probability of alignment of any fast alignment algorithm that generates SAM files. This bound is called Fast Bayesia...
متن کاملBayesian Adaptive Alignment and Inference
Sequence alignment without the specification of gap penalties or a scoring matrix is attained by using Bayesian inference and a recursive algorithm. This procedure's recursive algorithm sums over all possible alignments on the forward step to obtain normalizing constants essential to Bayesian inferences, and samples from the exact posterior distribution on the backward step. Since both terminal...
متن کاملBayesian Methods in Biological Sequence Analysis
Hidden Markov models, the expectation–maximization algorithm, and the Gibbs sampler were introduced for biological sequence analysis in early 1990s. Since then the use of formal statistical models and inference procedures has revolutionized the field of computational biology. This chapter reviews the hidden Markov and related models, as well as their Bayesian inference procedures and algorithms...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 14 1 شماره
صفحات -
تاریخ انتشار 1998